J.LACAN                                  gaogoa

 

XXII- R.S.I    1974-1975
      
version rue CB                                       note

13 mai 1975

 

(p178->)

     I1 n'y a pas, il n'y a pas d'état d'âme. Il y a dire à démontrer. Et pour promouvoir le titre sous lequel ce dire se poursuivra l'année prochaine, si je survis, je l'annoncerai: " 4,5,6 ".

    Cette année, j'ai dit "R.S.I.". Pourquoi pas "Un, deux, trois"? "Un, deux, trois, nous irons au bois"- Vous savez la suite peut-être? -"Quatre, cinq, six, cueillir des cerises"- Oui -"Sept, huit, neuf, dans mon panier neuf"- Eh bien, je m'arrêterai à "Quatre, cinq, six". Pourquoi?

    Pourquoi "R.S.I" : se sont-ils donnés comme lettres? C'est que qu'elles soient trois peut être dit second. Ce n'est que parce qu'elles sont trois qu'il y en a un qui est le Réel. Lequel, laquelle de ces trois lettres mérite-t-elle ce titre de Réel? Je dis qu'à ce niveau de logique, peu importe, et que le sens le cède au nombre, au point que c'est le nombre qui, ce sens, vais-je dire, le domine non pas, le détermine. Le nombre trois est à démontrer comme ce qu'il est, s'il est le Réel, à savoir l'Impossible. C'est la plus difficile sorte de démonstration. Ce qu'on veut démontrer en passe du dire, il faut que ce soit impossible, condition exigible pour le Réel. Il ex-siste comme Impossible.

    Encore faut-il le démontrer, pas seulement le montrer. Le démontrer relève du Symbolique. Si le Symbolique prend le pas ainsi sur l'Imaginaire, ça ne suffit pas. Ca ne donne que le ton. Et, en fin de compte, ce n'est pas au ton qu'il faut se fier, puisque c'est au nombre. C'est ce que j'essaie de mettre à l'épreuve. Mais un nombre noué, est-ce encore un nombre? Ou bien est-ce autre chose .

    Voilà où nous en sommes. Je vous ai retenus tout le long de l'année, autour d'un certain nombre de flashes. Je n'y suis, moi, , que pour peu de chose, étant déterminé comme sujet par l'Inconscient. Ou bien, par la pratique, une pratique qui implique l'Inconscient comme supposé. Est-ce à dire que comme tout supposé il soit imaginaire. C'est le sens même du mot sujet supposé comme imaginaire.

    Qu'y a-t-il dans le Symbolique qui ne s'imagine pas ? Ce que je veux vous dire c'est qu'il y a le trou. Quelqu'un qui me voyait (p179->) en proie, c'est le cas de le dire, à ce noeud, que là (Fig.I-2) je vous dessine sous sa forme la plus simple, quelqu'un qui m'y voyait en proie, sous des formes plus compliquées, m'a dit que je me démentais en quelque sorte d'avoir avancé dans un temps, selon une forme qui n'est même pas mienne, qui est picassienne , comme chacun sait, je ne cherche pas, je trouve, quelqu'un m'a dit: "Eh ben là je vous vois vachement chercher ."

    Chercher, c'est un terme qui provient de circare, comme vous pouvez le trouver dans n'importe quel dictionnaire étymologique. Je trouve quand même , puisque, ça ça n'est pas dans le dictionnaire étymologique, j'ai trouvé le trou. Le trou de souris, si. j'ose m'exprimer ainsi, par où j'en suis réduit à passer. A-t-il à faire avec ce qu'on imagine le déterminer, à savoir le cercle ? Un cercle peut être un trou, mais il ne l'est pas toujours. Pendant que j'y suis, à ce sujet, je dirai que le, je rappellerai ce qui se trouve déjà dans les dernières lignes de mes propos sur la causalité psychique, un proverbe arabe qui énonce que il y a un certain nombre de choses, il en nomme trois lui aussi, sur quoi rien ne laisse de trace : l'homme dans la femme dit-il d'abord, voire le pas de la gazelle sur le rocher. Je le précède, évoquant ce troisième terme, de ceci terminé par une virgule "plus inaccessible à nos yeux, cette trace, faite (faits ?) pour les signes du changeur,' C'est le troisième terme. I1 n'y a pas de trace sur la pièce de monnaie touchée, seulement d'usure.

    Oui ! C'est bien là où vient se solder, c'est le cas de le dire, ce quelque chose de noué dont il s'agit. Je trouve assez pour avoir à fomenter le cercle qui n'est du trou que la conséquence. Je trouve assez pour avoir à circuler. Je sais pas si vous remarquez que la police dont Hegel pose fort bien que tout ce qui est de la politique s'y enracine, qu'il n'y a rien que la politique qui ne soit enfin au dernier terme de réduction police pure et simple, que la police n'a que ce mot à la bouche: "Circulez". Peu lui importe la gyrie dont je vous ai parlé la dernière fois. Que ce soit de gyrer à droite ou à gauche, elle s'en fout, c'est le cas de le dire, ce dont il s'agit, c'est de circuler. Ca devient, ça ne devient sérieux que si l'on part du trou par où il faut en passer. Ce qu'il y a de remarquable dans le (p180->) noeud dit bo, je ne dis pas beau, dans le noeud bo, comme je l'appellerai à l'occasion, c'est exactement ceci qu'il fasse noeud, tout en ne circulant pas d'une façon qui utilise ce trou comme tel . Il y a une différence entre ce noeud et ceci (Fig.I.3) qui le trou utilise. C'est ce qui fait chaîne.

    I1 est frappant depuis le temps qu'on fait des chaînes que la chose qu'on n'ait pas remarquée c'est que dans le noeud bo, pas besoin d'user du trou, puisque ça fait noeud sans faire chaîne. Ca fait noeud de quelle façon ? D'une façon telle que pour le refaire de la façon qui fait des ronds (Fig.II.2), ce qui est exactement la même chose que ça  (Fig.I.l), malgré l'apparence, comme vous le voyez sous cette forme, cette forme  de pure apparence, c'est dans la mesure où ces deux ronds ne sont pas noués (Fig.I.l) que le troisième, dans cette mesure même, que le troisième infléchit l'un des deux qui entre eux sont libres, l' infléchit de telle façon que nécessairement arrivé à l'autre bout d'un de ces cercles, il infléchira l'autre à son tour, et qu'il, ainsi, tournera en rond, si ce rond, le petit là, nous le supposons du Symbolique, il fera indéfiniment le tour de la - entre guillemets puisque ce n'est pas une vraie chaîne- de la "fausse chaîne" de l'Imaginaire et du Symbolique. C'est bien en effet de cela qu'il s'agit. Comment se reconnaître dans ce double cercle couplé, et justement, de n'être pas noué.

    Pour qu'un noeud soit borroméen, qu'un noeud soit bo, il ne suffit pas qu'il soit noeud, il faut que chacun des éléments, ce terme, il faut et il suffit, on ne lui donne pas, sauf à se référer au noeud, son plein sens. Dire il faut, c'est quelque chose, mais dire il suffit implique, ce qu'on oublie toujours parce que on ne fait pas le trou, le seul trou qui vaille, la trouvaille, parce qu'on ne fait pas le trou, on ne voit pas que si la condition manque, rien ne va plus. Ce qui est l'envers dû il faut, envers toujours éludé, je vais vous le démontrer tout de suite.

    Vous nouez deux cercles (Fig.II.3), vous les nouez d'une façon qui implique comme c'est là non démontré, mais bien seulement montré, vous les nouez d'une façon telle qu'i1sne soient pas noué: qu'ils fassent ici quelque chose qui est aussi bien la consistance d'un cercle que dune droite infinie, cela suffit car c'est identi(p181->)fiable à cette figure (Fig.I.2), noeud bo, cela suffit à faire un noeud borroméen. Rien ne va vous être plus facile à imaginer que ceci: c'est que si vous en faites passer ici comme ça une autre, vous avez une figure qui aura l'air -comment ne pas le croire d'être un noeud borroméen. Néanmoins, il ne suffit pas de couper cette consistance pour que chacun des trois autres éléments soient libres des deux autres. Pour qu'il en soit ainsi, il faudrait que les choses se disposent autrement, qui pourtant a bien l'air d'être la même chose, à savoir (Fig.III) que la disposition à quatre éléments soit de cette forme, en tant que montrable. N'est-ce qui le démontre? Car dans cette forme, il est clair que l'un quelconque des éléments étant rompu, les trois autres sont libres. Ce qui n'était pas le cas dans la première figure que je vous ai livrée.

    Et d'abord, qu'est-ce qu'il y a de commun dans la façon dont je vous figure ces quatre éléments, qu'est-ce qu'il y a de commun entre la droite comme infinie et le cercle? Ce qu'il y a de commun  c'est que leur rupture libère les autres éléments du noeud. La rupture du cercle équivaut à la rupture de la droite infinie. En quoi ? Au point de vue du noeud, non pas en tant que rupture, dans ses effets sur le noeud, non pas dans ses effets de reste sur l'élément. Que reste-t-il du cercle après sa rupture? Une droite finie comme telle, autant dire bonne à jeter, un petit chiffon, un bout de corde de rien du tout. Le zéro du cercle coup laissez-moi figurer ce coupé par ce qui sépare c'est-à-dire le deux, zéro sur deux égale tout au plus ce petit un de rien du tout la droite infinie, le grand un, une fois sectionnée, ça fait quand même deux demi-droites qui partent, comme on dit d'un point, d'un point zéro, pour s'en aller à l'infini. Un sur deux égale deux. Ceci pour vous faire sentir que quand j'énonce qu'il n'y a pas de rapport sexuel, je donne au sens du mot rapport l'idée de proportion. Mais chacun sait que le "mos geometricum" d'Euclide qui a  suffi pendant tant de temps à paraître le parangon de la logique, est tout à fait insuffisant, et qu'à entrer dans la figure du noeud, il y a une toute autre façon de supporter la figure du non rapport des sexes, c'est de les supporter de deux cercles en tant que non noués. C'est de cela qu'il s'agit dans ce que j'énonce du non-rapport, chacun des cercles qui se constituent, nous ne savons (p182->) pas encore de quoi, dans le rapport des sexes, chacun dans sa façon de tourner en rond comme sexe n'est pas à l'autre noué. C'est cela que ça veut dire, mon non-rapport.

    I1 est tout à fait frappant que le langage ait depuis longtemps devancé la figure du noeud sur laquelle s'escriment seulement de nos jours les mathématiciens, pour appeler noeud ce qui unit l'homme et une femme, en parlant, sans bien naturellement savoir ce dont il s'agit, en parlant métaphoriquement des noeuds qui les unissent. Ce sont ces noeuds qu'il vaut sans doute de rapporter en montrant qu'ils implique  comme nécessaire ce trois élémentaire dont il se trouve que je le supporte de ces trois indications de sens, de sens matérialisé qui se figure dans les nominations du Symbolique, de l'Imaginaire et du Réel.

    Je viens d'introduire le terme de nomination. J'ai eu à y répondre récemment à propos de ce qui était rassemblé dans un petit ouvrage de logiciens sur le sujet de ce que les logiciens étaient parvenus à énoncer jusqu'à ce jour, concernant ce qu'on  appelle le référent. Je tombais là du haut de mon noeud, et ça ne m'a pas du tout facilité les choses parce que c'est là toute la question, la nomination relève-t-elle, comme il semble apparemment du Symbolique ? Vous le savez, peut-être vous en souvenez-vous, je vous ai fait un jour la figure, la figure qui s'impose quand on  veut fomenter un noeud à quatre. Le moins qu'on puisse dire, c'est que si nous introduisons à ce niveau la nomination, c'est un quart élément. Cette figure, je vous l'ai faite de cette façon-ci (Fig. III.2 ) : il faut partir de cercles non noués, et même je n'ai pas de répugnance à évoquer le cas où j'ai fait défaut à cette figure . Voilà ce qui convient pour qu'un quart cercle noue les trois qui d'abord était posé comme dénoués. Cette figure, contrairement à celle d'un jour où j'étais aussi bien embrouillé que vous pouvez l'être à l'occasion, faute de vous être rompus à cet exercice, l'un des cercles restait hors du jeu.

    C'est en ceci que si plein dans sa simplicité que soit le noeud borroméen à trois, c'est à partir de quatre, et je souligne, à s'engager dans ce quatre, on trouve une voie, une voie particulière qui ne va que jusqu'à six, en d'autres termes, qui fait du (p183->) cercle couplé, pris pour chacun des éléments qualifiables de ce que le trois impose, non pas de distinction, mais bien au contraire d'identité entre les trois termes du Symbolique, de l'Imaginaire et du Réel, au point qu'il nous semble éligible de retrouver dans chacun cette triplice, cette trinité du Symbolique, de l'Imaginaire et du Réel, à savoir d'évoquer que le Réel tient dans ces termes que j'ai déjà fomentés du nom d'ex-sistence, de consistance et de trou, de faire de l'ex-sistence écrite comme je l'écris, à savoir ce qui joue jusqu'à une certaine limite dans le noeud, cela supporte  le Réel. Ce qui fait consistance est de l'ordre imaginaire comme le suppose ceci qui nous est vraiment tangible que s'il y a quelque chose de quoi relève la rupture, c'est bien la consistance à lui donner le sens le plus réduit. Il  reste alors, mais reste-t -il pour le Symbolique l'affectation du terme trou, ceci en tant que  la mathématique, celle proprement qui se qualifie de la topologie nous donne une figure, sous la forme du tore, de quelque chose qui pourrait figurer le trou. Or, la topologie ne fait rien de tel, ne serait-ce que parce que le tore en a. deux trous: le trou interne avec sa gyrie et le trou qu'on peut dire être externe, et grâce à quoi le tore se démontre participer de la figure du cylindre qui est une des façons qui, pour nous, matérialise la mieux la figure de la droite à l'infini . Cette droite à l'infini, chacun sait son rapport à ce que j'appelle simplement le rond de la consistance. Chacun sait ce rapport, et pas seulement de m'avoir vu le figurer dans le noeud borroméen, celui qui porte l'indication nbo.

    Un nommé Desargues, l'Arguésien, comme on dit; s'est avisé depuis longtemps que la droite infinie est en tout homologue au cercle. En quoi il a devancé le nommé Riemann. Il l'a devancé, néanmoins, une question reste ouverte à quoi je donne, par l'attention que j'apporte au noeud borroméen, déjà réponse. Ce qui ne vous empêchera pas, du moins je l'espère, d'en maintenir présente pour votre esprit la forme question.

    Comme vous le voyez dans cette figure à gauche (Fig.I.l), du noeud borroméen constitué par l'équivalent de ce cercle sous la forme d'une droite nouée à un cercle, du couple (Fig.I.2) supposé  de ce qui .là  ( qu'il a ?) pour le supporter pour votre esprit, qui  là(?) pourrait être du Symbolique. Les deux autres, sans qu'on sache de quelle droite figurer spécialement le Réel, par exemple celle-ci, ou (p184->) l'Imaginaire pour celle-ci, que faut-il pour que cela fasse noeud .I1 faut que le point à l'infini soit tel que les deux droites ne fassent pas chaîne. C'est là la condition que les deux droites quelqu'elles soient, d'où qu'on les voit, - je vous fais remarquer en passant que ce d'où qu'on les voit supporte cette réalité que j'énonce du regard, le regard n'est définissable que d'un d'où qu'on les voit - d'où qu'on les voit est à vrai dire, si nous pensons une droite comme faisant rond d'un point, d'un point unique à l'infini, comment ne pas voir que ceci a un sens qu'elle ne se noue pas. Non seulement que ceci a un sens qu'elle ne se noue pas! mais que c'est deux noeuds passent noués, qu'elles se noueront effectivement à l'infini, point qu'à ma connaissance, Desargues, Desargues dont j'ai usé au temps où ailleurs qu'ici, à Normale Supérieure, pour l'évoquer par son nom, je faisais mon séminaire sur les Ménines, Les Ménines de Vélasquez où j'en profitais pour me targuer de situer où il était ce fameux regard dont bien évidemment c'est le sujet du tableau. Je le situais quelque part, dans le même intervalle,-peut-être qu'un jour vous verrez paraître ce séminaire,­dans le même intervalle que j'établis ici au tableau, sous une autre forme, à savoir dans celui que je définis de ce que les droites infinies en leur point supposé d'infini, ne se nouent pas en chaîne.

    C'est bien là que commence pour nous la question. Il ne semble pas que Desargues se soit jamais posé la forme sous laquelle il supposait ces droites infinies, en posant la question de savoir si elles se nouaient ou pas. I1 est tout à fait frappant que Riemann , pour lui, ait tranché la question d'une façon peu satisfaisante en faisant de tous les points à l'infini à quelque droite qu'ils appartiennent un seul et unique point qui est au principe de la géométrie de Riemann.

    A soulever la question du noeud, nous allons voir, je vais ici vous figurer quelque chose 
(Fig.I .4), ah! dont j'espère venir à bout, sous la forme d'un noeud, d'un vrai, qui, chose curieuse, présente une sorte d'analogie avec cette forme (Fig.II.2). Si nous étudions ce noeud comme le font les mathématiciens, ce que nous, tout ce que nous pouvons faire, c'est d'amorcer la notion dite du groupe fondamentale, c'est-à-dire de définir la structure de ce noeud par une série de trajets qui se feront d'un point quelconque
(p185->)
celui-ci, par exemple. Nous définissons le noeud par quelque chose qui s'appelle le groupe fondamental, et qui comporte un nombre, un nombre qui diffère selon les noeuds, un nombre de trajets qui seront nécessaires pour indiquer sa structure. Ces trajets, même s'ils font plusieurs boucles dans chacun, mais là je pose la question, je mets le trou entre guillemets, dans chacun des trous qui y apparemment, font ce noeud. Il y en aura un certain nombre, et contrairement à ce que vous pouvez imaginer, ce nombre, dans ce cas, dans ce cas où la figure mise à plat à l'air d'en comporter quatre, quatre champs distincts , ça ne fera pas pour autant quatre cercles individualisables de trajet, mais contrairement à ce qu'on peut imaginer, ça n'est pas le nombre qui sera caractéristique de ce groupe fondamental, ça sera la relation entre un certain nombre de trajets.

    Nous supportons là, à l'état pur, le notion de rapport, en tant que, justement, elle nous ramène au noeud, au noeud borroméen puisque ce rapport même fait noeud, à ceci près que ce noeud manque de nombres. En prenant cette étape du noeud borroméen, nous supportons du nombre même les cercles ou les trajets dont il s'agit pour n'importe quel noeud, même si ce noeud, celui que je viens de dessiner, vous le voyez, n'a de consistance qu'unique. Nous prenons le nombre comme truchement, comme intermédiaire, comme élément lui-même pour nous introduire dans la dialectique du noeud. Ce où cette fois-ci j'en viendrai est ceci, c'est à savoir que rien n'est moins, si je puis dire, naturel que de penser ce noeud. Qu'il y ait de l'un, ce que j'ai avancé en son temps pour le supporter du cercle est quelque chose à quoi, justement, se limite le mouvement de la pensée, à faire cercle, et c'est en quoi il n'y a rien de plus naturel, c'est le cas de le dire, que de lui reproche son cercle comme vicieux. Que si, pour figurer le rapport des sexe sans autrement ni plus préciser, je trouve la figure de deux un, sous la forme de deux cercles, qu'un troisième noue précisément de ce qu'ils ne soient entre eux pas noués, car ce n'est pas seulement de ce qu'ils ne soient, qu'ils soient libres quand ce troisième est rompu, qu'il s'agit, c'est de ce que ce troisième comme je vous l'ai montré dans la figure (Fig.II.l), celle-ci, c'est de ce que ce troisième les noue expressément de ce qu'ils ne soient (p186->) pas noués qu'il s'agit, et n'aurai-je fait que de faire passer cette fonction dans votre esprit, que je considèrerai qu'aujourd'hui je n'ai pas parlé en vain : C'est de cela même qu'il s'agit, c'est de ce qu'ils ne soient pas noués qu'ils se nouent. Et la nécessité qu'un quatrième terme vienne ici imposer ses vérités premières est justement ce sur quoi je veux terminer. C'est à savoir que sans le quatrième, rien n'est à proprement parler mis en évidence, je n'ai pu aujourd'hui le faire, mis en évidence de ce qu'est vraiment le noeud borroméen.

    Dans toute chaîne, pour vous imaginer la plus simple, dans toute chaîne borroméenne, il y a un un puis un deux (Fig.IV.l) Selon la forme que je vous ai dessinée tout à l'heure, vous trouverez là le un et le deux, qui est le commencement de la chaîne après quoi, ici, il y aura un troisième cercle qui fera boucle. Qu'est-ce qu'implique que dans une chaîne quelconque, comme elle fait chaîne, elle fait toujours chaîne, nous placions un quelconque des deux premiers au rang troisième? Quelque soit la chaîne, l'opération dont il s'agit impliquera pour nous limiter à la chaîne 1-2-3-4, impliquera que si nous voulons mettre un quelconque de ces deux au rang troisième, le 1 sera dès lors noué au 2, et par le 3 et par le 4. Faites-en l'expérience, car aussi bien, il n'y à rien de tel pour essayer de penser ce noeud que de manipuler des ronds de ficelle. Je le répète, quoique- ayant déjà plus de place au tableau: 1-2-3-4, à nous limiter à ceci, dans une chaîne quelconque, par quelque bout que nous la prenions, impliquera qu'à mettre soit le 1, soit le 2, à la place dite troisième, à en faire l'effort, nous obtiendrons ceci, c'est que pour choisir l'un des deux, puisque ici c'est le 2 que nous choisissons, pour mettre le 2 là en rang troisième, le 3 et le 4 nécessairement noueront ce 1 au 2 ainsi déplacé. I1 est tout à fait clair que le 1 et le 2 sont interchangeables, c'est à savoir qu'au début d'une chaîne, le premier et le second sont indéfiniment interchangeables. C'est à placer l'un de ces deux là au rang trois, à nous efforcer à viser à le placer au rang trois que nous verrons non pas seulement le trois intéressé et passer à la place du 2, mais avec le 3, le quatrième. Et c'est en cela que se justifie l'intérêt que je porte au noeud à quatre dans l'occasion et que je développerai l'année prochaine.

    (p187->) Dès lors, puisque nous ne savons pas à quoi coupler la nomination, la nomination qui ici fait quatrième terme, est-ce que nous allons le coupler à l'Imaginaire, à savoir que venant du Symbolique, la nomination est là pour faire dans l'Imaginaire un certain effet ? C'est bien en effet ce dont il semble s'agir chez les logiciens quand ils parlent du référent. Les descripions russelliennes, celles qui s'interrogent sur l'auteur, celles qui se demandent en quoi il est légitime et fragile logiquement d'interroger sur le fait que Walter Scott est-il ou non l'auteur de Waverley , il semble que cette référence concerne expressément ce qui s'individualise du support pensé des corps. I1 n'est en fait certainement rien de semblable. La notion de référent vise le Réel. C'est en tant que Réel que ce que les logiciens imaginent comme Réel donne son support au référent. A cette nomination imaginaire, celle qui s'écrit de ceci par exemple, que de la relation entre R et S, nous avons une nomination indice i, et puis le I pour nous en tenir au noeud à quatre, comme constituant le lien entre le Réel et le Symbolique.

Je proposerai ceci, c'est que la nomination imaginaire, c'es très précisément ce que je viens de supporter aujourd'hui par la droite infinie, et que cette droite, dans ce cercle que nous composons d'un cercle et d'une droite, que cette droite est très précisément

 non pas ce qui nomme quoique ce soit de l'Imaginaire mais ce qui, justement, fait barre, inhibe le maniement de tout ce qui est démonstratif, de tout ce qui articulé comme Symbolique, fait barre au niveau de l'imagination même et rend ce dont il s'agit dans le corps dont chacun sait que ce qui  

(p188->)intéresse le corps, au moins dans la perspective analytique, c'est le corps en tant qu'il fait orifice, que ce par quoi il se noue à quelque Symbolique ou Réel dont il s'agisse, c'est justement de ce noeud, la mise en évidence d'un cercle, d'un orifice que l'Imaginaire est constitué. Cette droite infinie qui ici complète le faux trou dont il s'agit, puisqu'il ne suffit pas d'un orifice pour faire un trou, chacun d'entre eux, étant indépendant des autres, c'est très précisément l'inhibition que la pensée a à l'endroit du noeud. Nous pouvons interroger de la même façon, si entre Réel et Imaginaire, c'est la nomination indice du Symbolique, c'est-à-dire en tant que dans le Symbolique surgit quelque chose qui nomme, nous voyons ça dans les début de la Bible, à ceci près qu'on ne remarque pas ceci, c'est que l'idée créationniste le "Fiat lux" inaugural n'est pas une nomination. Que ce soit du Symbolique que surgisse le Réel, c'est ça l'idée de création, n'a rien à faire avec le fait que dans un second temps, le même Dieu donne leur nom à chacun des animaux qui habitent le paradis.

    De quelle nomination s'agit-il, dans ce que j'appelle ici pour l'indiquer d'un grand N de S, de quelle nomination s'agit-il ?

dans cette, dans une des deux de ce qui nous est mythiquement raconté? C'est bien en effet une question à quoi il vaut qu'on s'arrête un peu, parce que cela relève de sens qui, dans chaque cas, est un sens différent. La nomination de chacun qui d'ailleurs est un nom commun, non pas au sens de Russell un nom propre, la nomination de chacun des espèces que représente-t-elle? Une nomination, assurément, étroitement symbolique, une nomination limitée au Symbolique.  Est-ce que c'est cela qui nous suffit pour supporter ce qui vient en un point certes pas indifférent dans cette élémentation à quatre du noeud qui se supporte du nom du Père. Est-ce que le Père c'est celui qui a donné leur nom aux choses? Ou bien ce Père doit-t-il être interrogé en tant que Père, au niveau du Réel? Est-ce que pour tout dire, le Père éternel, à quoi bien sûr, rien ne nous em(p189->)pêcherait de croire s'il était même pensable que lui même croit en lui, alors que c'est tout à fait clairement impensable, est-ce que nous devons mettre le terme nomination comme noué au niveau de ce cercle dont nous supportons la fonction du Réel? C'est entre ces trois termes, nomination de l'Imaginaire comme inhi(bi)tion, nomination du Réel comme ce que il se trouve qu'elle se passe en fait, c'est-à-dire angoisse, ou nomination du Symbolique, je veux dire impliquée (impliquer ?) fleur du Symbolique lui-même, à savoir comme il se passe en fait sous la forme du Symptôme, c'est entre ces trois termes que j'essaierai l'année prochaine, ce n'est pas une raison parce que j'ai la réponse pour que je ne vous la laisse pas en tant que question, que je m'interrogerai l'année prochaine sur ce qu'il convient de donner comme substance au Nom du Père.

(p190->)

 

(p191->)

(p192->)

 

 

 

note: bien que relu, si vous découvrez des erreurs manifestes dans ce séminaire, ou si vous souhaitez une précision sur le texte, je vous remercie par avance de m'adresser un émail. Haut de Page 
commentaire